Sciences Po Option Mathématiques

Epreuve 2011 Corrigé

Première partie

A.1. La fonction f_{λ} est la composée de la fonction linéaire $x \mapsto -\lambda x$ et de la fonction exponentielle. Cette dernière étant strictement croissante sur \mathbb{R} , la monotonie de f_{λ} est donc donnée par celle de la fonction $x \mapsto -\lambda x$.

On doit distinguer deux situations:

- Si $\lambda < 0$ alors le coefficient de la fonction linéaire $x \mapsto -\lambda x$ est strictement positif et celle-ci est strictement croissante sur $\mathbb R$. La fonction f_λ est elle-même strictement croissante sur $\mathbb R$.
- Si $\lambda > 0$ alors le coefficient de la fonction linéaire $x \mapsto -\lambda x$ est strictement négatif et celle-ci est strictement décroissante sur $\mathbb R$. La fonction f_λ est elle-même strictement décroissante sur $\mathbb R$.

Si $\lambda < 0$ alors la fonction f_{λ} est strictement croissante sur $\mathbb R$ et si $\lambda > 0$ alors la fonction f_{λ} est strictement décroissante sur $\mathbb R$.

Remarque : on aurait bien sûr pu établir la dérivabilité sur \mathbb{R} de la fonction f_{λ} (composée de deux fonctions dérivables sur \mathbb{R}), calculer f_{λ} '(x) pour tout x réel $(f_{\lambda}$ ' $(x) = -\lambda e^{-\lambda x})$ et étudier le signe de l'expression obtenue ...

A.2. On a classiquement :

$$y = f_{\lambda}'(a) \times (x-a) + f(a)$$

$$= -\lambda e^{-\lambda a} \times (x-a) + e^{-\lambda a}$$

$$= -\lambda e^{-\lambda a} x + a\lambda e^{-\lambda a} + e^{-\lambda a}$$

$$= -\lambda e^{-\lambda a} x + (a\lambda + 1) e^{-\lambda a}$$

Au point A(a; f(a)), la courbe représentative \mathscr{C}_{λ} de la fonction f_{λ} admet pour tangente la droite $T_{\lambda,a}$ d'équation : $y = -\lambda e^{-\lambda a} x + (a\lambda + 1)e^{-\lambda a}$.

A.3. a. Il semble, d'après l'affichage de la calculatrice, que, pour toutes valeurs des réels λ et a, la courbe \mathscr{C}_{λ} soit située au-dessus de la tangente $T_{\lambda,a}$.

Remarque : il est intéressant de démontrer ce résultat !

Classiquement, pour étudier cette position relative, nous nous intéressons au signe sur \mathbb{R} de la différence :

$$\Delta_{\lambda}(x) = f_{\lambda}(x) - \left[-\lambda e^{-\lambda a} x + (a\lambda + 1)e^{-\lambda a} \right] = e^{-\lambda x} + \lambda e^{-\lambda a} x - (a\lambda + 1)e^{-\lambda a}$$

La fonction Δ_{λ} est dérivable sur \mathbb{R} comme somme de deux fonctions dérivables sur cet intervalle et pour tout x réel, on a :

$$\Delta_{\lambda}'(x) = -\lambda e^{-\lambda x} + \lambda e^{-\lambda a} = -\lambda \left(e^{-\lambda x} - e^{-\lambda a}\right) = -\lambda \left(f_{\lambda}(x) - f_{\lambda}(a)\right)$$

Ici encore, nous distinguons deux situations:

• Si $\lambda < 0$.

Le signe de Δ_{λ} '(x) est identique à celui de la différence $f_{\lambda}(x) - f_{\lambda}(a)$.

Comme on l'a vu à la question précédente : quand $\lambda < 0$ la fonction f_{λ} est strictement croissante sur $\mathbb R$. On en déduit immédiatement :

o Si
$$x < a$$
, $f_{\lambda}(x) < f_{\lambda}(a)$ et $\Delta_{\lambda}'(x) < 0$.

o Si
$$x < a$$
, $f_{\lambda}(x) > f_{\lambda}(a)$ et $\Delta_{\lambda}'(x) > 0$.

Ainsi, la fonction Δ_{λ} est strictement décroissante sur l'intervalle $]-\infty$; a] et strictement croissante sur l'intervalle $[a;+\infty[$. Elle admet donc un minimum en a et ce minimum vaut : $\Delta_{\lambda}(a) = e^{-\lambda a} + \lambda e^{-\lambda a} \times a - (a\lambda + 1)e^{-\lambda a} = 0$.

En définitive : $\forall x \in \mathbb{R}, \Delta_{\lambda}(x) \ge \Delta_{\lambda}(a) = 0$, soit :

$$\forall x \in \mathbb{R}, f_{\lambda}(x) \ge -\lambda e^{-\lambda a} x + (a\lambda + 1)e^{-\lambda a}$$

Graphiquement, la courbe est bien située au-dessus de sa tangente en tout point.

• Si $\lambda > 0$.

Le signe de Δ_{λ} '(x) est le signe contraire de celui de la différence $f_{\lambda}(x) - f_{\lambda}(a)$. Comme on l'a vu à la question précédente : quand $\lambda > 0$ la fonction f_{λ} est

strictement décroissante sur $\ensuremath{\mathbb{R}}$. On en déduit immédiatement :

o Si
$$x < a$$
, $f_{\lambda}(x) > f_{\lambda}(a)$ et $\Delta_{\lambda}'(x) < 0$.

o Si
$$x < a$$
, $f_{\lambda}(x) < f_{\lambda}(a)$ et $\Delta_{\lambda}'(x) > 0$.

Ainsi, comme dans la situation précédente, la fonction Δ_{λ} est strictement décroissante sur l'intervalle $]-\infty$; a] et strictement croissante sur l'intervalle $[a;+\infty[$. On conclut à l'identique :

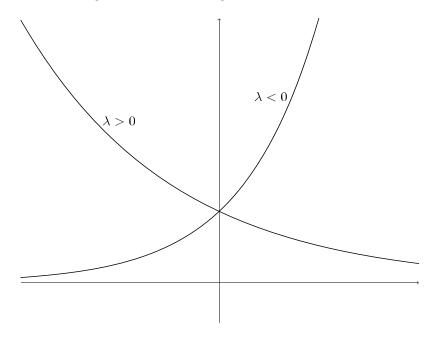
$$\forall x \in \mathbb{R}, f_{\lambda}(x) \ge -\lambda e^{-\lambda a} x + (a\lambda + 1)e^{-\lambda a}$$

Graphiquement, la courbe est encore située au-dessus de sa tangente en tout point.

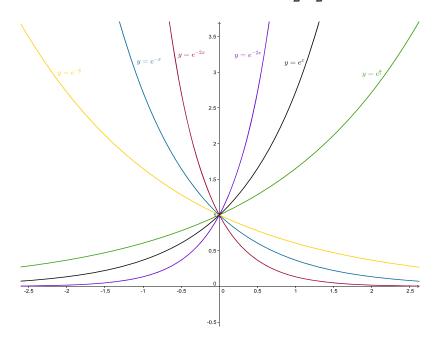
Bien qu'une conjecture soit demandée dans cette question, nous concluons finalement :

Pour toutes valeurs des réels λ et a, la courbe \mathscr{C}_{λ} est située au-dessus de la tangente $T_{\lambda,a}$.

b. On obtient, selon le signe de λ les allures générales suivantes :



A titre de complément, nous fournissons également les courbes représentatives de la fonction f_{λ} pour les valeurs suivantes de λ : -2, -1, $-\frac{1}{2}$, $\frac{1}{2}$, 1 et 2;



B.1. En guise de préambule, soulignons que, pour toute valeur de λ , la fonction f_{λ} prend, du fait de la fonction exponentielle, des valeurs strictement positives sur \mathbb{R} . Elle y est par ailleurs continue. Ainsi, l'aire sous la courbe \mathscr{C}_{λ} sur l'intervalle $[0;\alpha]$ est donnée par :

$$\mathscr{A}_{\lambda}(\alpha) = \int_{0}^{\alpha} f_{\lambda}(x) dx$$

a. La fonction f_{λ} admet pour primitive sur \mathbb{R} et donc sur $[0; \alpha]$ la fonction

$$x \mapsto -\frac{1}{2} f_{\lambda}(x) = -\frac{1}{2} e^{-\lambda x}$$
. Il vient donc :

$$\mathscr{A}_{\lambda}(\alpha) = \int_{0}^{\alpha} f_{\lambda}(x) dx = \left[-\frac{1}{\lambda} e^{-\lambda x} \right]_{0}^{\alpha}$$
$$= -\frac{1}{\lambda} \left(e^{-\lambda \alpha} - e^{-\lambda x_{0}} \right) = \frac{1}{\lambda} \left(1 - e^{-\lambda \alpha} \right)$$
$$= \frac{1}{\lambda} \left(1 - f_{\lambda}(\alpha) \right)$$

$$\mathscr{A}_{\lambda}(\alpha) = \frac{1}{\lambda} \left(1 - e^{-\lambda \alpha} \right) = \frac{1}{\lambda} \left(1 - f_{\lambda}(\alpha) \right)$$

- b. Déterminer la limite éventuelle de $\mathscr{A}_{\lambda}(\alpha)$ lorsque α tend vers $+\infty$ équivaut, d'après le résultat précédent, à déterminer la limite éventuelle de $f_{\lambda}(\alpha)$ en $+\infty$.
- Si $\lambda < 0$, on a: $\lim_{\alpha \to +\infty} \left(-\lambda \alpha \right) = +\infty$. Or $\lim_{x \to +\infty} e^x = +\infty$. On en déduit alors (composition): $\lim_{\alpha \to +\infty} e^{-\lambda \alpha} = \lim_{\alpha \to +\infty} f_{\lambda}\left(\alpha\right) = +\infty$. Il vient ensuite $\lim_{\alpha \to +\infty} \left[1 f_{\lambda}\left(\alpha\right) \right] = -\infty$ et, finalement, le réel 1

$$\frac{1}{\lambda}$$
 étant strictement négatif :

$$\lim_{\alpha \to +\infty} \mathscr{A}_{\lambda}(\alpha) = \lim_{\alpha \to +\infty} \left[\frac{1}{\lambda} (1 - f_{\lambda}(\alpha)) \right] = +\infty$$

Si $\lambda > 0$, on a: $\lim_{\alpha \to +\infty} (-\lambda \alpha) = -\infty$. Or $\lim_{x \to -\infty} e^x = 0$. On en déduit alors (composition):

 $\lim_{\alpha\to +\infty} e^{-\lambda\alpha} = \lim_{\alpha\to +\infty} f_\lambda\left(\alpha\right) = 0 \text{ . Il vient ensuite } \lim_{\alpha\to +\infty} \left[1-f_\lambda\left(\alpha\right)\right] = 1 \text{ et, finalement :}$

$$\lim_{\alpha \to +\infty} \mathscr{A}_{\lambda}(\alpha) = \lim_{\alpha \to +\infty} \left[\frac{1}{\lambda} (1 - f_{\lambda}(\alpha)) \right] = \frac{1}{\lambda}$$

Si
$$\lambda < 0$$
, on a: $\lim_{\alpha \to +\infty} \mathscr{A}_{\lambda}(\alpha) = +\infty$ et si $\lambda > 0$, on a: $\lim_{\alpha \to +\infty} \mathscr{A}_{\lambda}(\alpha) = \frac{1}{\lambda}$.

PanaMaths [4-26] Mai 2012

- B.2. a. Les fonctions $t \mapsto t f_{\lambda}(t)$ et $t \mapsto t^2 f_{\lambda}(t)$ sont continues sur \mathbb{R} comme produits de deux fonctions continues sur cet intervalle. Les intégrales de ces deux fonctions sur l'intervalle $[0; \alpha]$ sont donc bien définies.
 - b. Commençons par calculer $I_{\lambda}(\alpha)$.

La fonction identité est dérivable et de dérivée continue sur \mathbb{R} et donc, à fortiori, sur l'intervalle $[0; \alpha]$. La fonction f_{λ} est continue sur \mathbb{R} et donc, à fortiori, sur l'intervalle $[0; \alpha]$. Nous pouvons donc procéder à une intégration par parties :

$$\begin{split} I_{\lambda}(x) &= \int_{0}^{\alpha} t \, f_{\lambda}(x) \, dx = \int_{0}^{\alpha} t \, e^{-\lambda x} \, dx \\ &= \left[-\frac{1}{\lambda} t \, e^{-\lambda x} \right]_{0}^{\alpha} + \int_{0}^{\alpha} \frac{1}{\lambda} e^{-\lambda x} \, dx \\ &= -\frac{1}{\lambda} \alpha \, e^{-\lambda \alpha} + \frac{1}{\lambda} \, \mathcal{A}_{\lambda}(\alpha) \\ &= -\frac{\alpha}{\lambda} e^{-\lambda \alpha} + \frac{1}{\lambda} \left[\frac{1}{\lambda} \left(1 - e^{-\lambda \alpha} \right) \right] \\ &= \frac{1}{\lambda^{2}} - \frac{\alpha}{\lambda} e^{-\lambda \alpha} - \frac{1}{\lambda^{2}} e^{-\lambda \alpha} \\ &= \frac{1}{\lambda^{2}} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^{2}} \right) e^{-\lambda \alpha} \end{split}$$

Pour calculer $J_{\lambda}(\alpha)$ nous procédons de façon similaire (en tenant compte cette fois du fait que la fonction carré est dérivable de dérivée continue sur \mathbb{R} et donc, à fortiori, sur l'intervalle $[0; \alpha]$). On a :

$$\begin{split} J_{\lambda}(\alpha) &= \int_{0}^{\alpha} t^{2} f_{\lambda}(x) dx = \int_{0}^{\alpha} t^{2} e^{-\lambda x} dx \\ &= \left[-\frac{1}{\lambda} t^{2} e^{-\lambda x} \right]_{0}^{\alpha} + \int_{0}^{\alpha} 2t \frac{1}{\lambda} e^{-\lambda x} dx \\ &= -\frac{1}{\lambda} \alpha^{2} e^{-\lambda \alpha} + \frac{2}{\lambda} I_{\lambda}(\alpha) \\ &= -\frac{\alpha^{2}}{\lambda} e^{-\lambda \alpha} + \frac{2}{\lambda} \left[\frac{1}{\lambda^{2}} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^{2}} \right) e^{-\lambda \alpha} \right] \\ &= \frac{2}{\lambda^{3}} - \left(\frac{\alpha^{2}}{\lambda} + \frac{2\alpha}{\lambda^{2}} + \frac{2}{\lambda^{3}} \right) e^{-\lambda \alpha} \end{split}$$

$$I_{\lambda}(\alpha) = \frac{1}{\lambda^{2}} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^{2}}\right) e^{-\lambda \alpha} \text{ et } J_{\lambda}(\alpha) = \frac{2}{\lambda^{3}} - \left(\frac{\alpha^{2}}{\lambda} + \frac{2\alpha}{\lambda^{2}} + \frac{2}{\lambda^{3}}\right) e^{-\lambda \alpha}$$

PanaMaths [5-26] Mai 2012

c. Comme à la question B.1.b. nous allons distinguer deux cas suivant que λ est strictement positif ou strictement négatif.

On a d'abord :
$$I_{\lambda}(x) = \frac{1}{\lambda^2} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) e^{-\lambda \alpha} = \frac{1}{\lambda^2} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) f_{\lambda}(\alpha)$$
.

Si $\lambda < 0$.

On a, comme vu à la question B.1.b. : $\lim_{\alpha \to +\infty} f_{\lambda}(\alpha) = +\infty$.

Par ailleurs:
$$\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) \right] = \lim_{\alpha \to +\infty} \left(-\frac{\alpha}{\lambda}\right) = +\infty$$
.

On en déduit (produit) :
$$\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) f_{\lambda}(\alpha) \right] = +\infty$$
 puis

$$\lim_{\alpha \to +\infty} \left[\frac{1}{\lambda^{2}} - \left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^{2}} \right) f_{\lambda} \left(\alpha \right) \right] = +\infty, \text{ soit : } \lim_{\alpha \to +\infty} I_{\lambda} \left(\alpha \right) = +\infty.$$

Si $\lambda > 0$.

On a cette fois :
$$\lim_{\alpha \to +\infty} f_{\lambda}\left(\alpha\right) = 0$$
 et $\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) \right] = \lim_{\alpha \to +\infty} \left(-\frac{\alpha}{\lambda}\right) = -\infty$.

On est donc confronté à une forme indéterminée du type : « $\infty \times 0$ ».

D'après ce qui précède, la forme indéterminée correspond au produit : $\frac{\alpha}{\lambda}e^{-\lambda\alpha}$.

On a:

$$\frac{\alpha}{\lambda}e^{-\lambda\alpha} = \frac{\frac{\alpha}{\lambda}}{e^{\lambda\alpha}} = \frac{1}{\lambda^2}\frac{\lambda\alpha}{e^{\lambda\alpha}}$$

On a : $\lim_{\alpha \to +\infty} (\alpha \lambda) = +\infty$. Or, par croissance comparée : $\lim_{X \to +\infty} \frac{X}{e^X} = 0$. On en déduit alors

(composition): $\lim_{\alpha \to +\infty} \frac{\lambda \alpha}{e^{\lambda \alpha}} = 0$.

On a donc :
$$\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha}{\lambda} + \frac{1}{\lambda^2}\right) f_{\lambda}\left(\alpha\right) \right] = 0 + 0 = 0$$
 et, finalement : $\lim_{\alpha \to +\infty} I_{\lambda}\left(\alpha\right) = \frac{1}{\lambda^2}$.

On a, par ailleurs :
$$J_{\lambda}(\alpha) = \frac{2}{\lambda^3} - \left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3}\right) e^{-\lambda \alpha} = \frac{2}{\lambda^3} - \left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3}\right) f_{\lambda}(\alpha)$$
.

Si $\lambda < 0$.

On a, comme vu à la question B.1.b. : $\lim_{\alpha \to +\infty} f_{\lambda}(\alpha) = +\infty$.

Par ailleurs:
$$\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3}\right) \right] = \lim_{\alpha \to +\infty} \left(-\frac{\alpha^2}{\lambda}\right) = +\infty$$
.

On en déduit (produit) :
$$\lim_{\alpha \to +\infty} \left[-\left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3}\right) f_{\lambda}(\alpha) \right] = +\infty$$
 puis

$$\lim_{\alpha\to+\infty} \left[\frac{2}{\lambda^3} - \left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3} \right) f_{\lambda}(\alpha) \right] = +\infty, \text{ soit } : \lim_{\alpha\to+\infty} J_{\lambda}(\alpha) = +\infty.$$

On peut, par exemple, écrire, pour tout réel α non nul :

$$-\left(\frac{\alpha^{2}}{\lambda} + \frac{2\alpha}{\lambda^{2}} + \frac{2}{\lambda^{3}}\right)e^{-\lambda\alpha} = -\frac{\alpha^{2}}{\lambda}\left(1 + \frac{2}{\alpha\lambda} + \frac{2}{\alpha^{2}\lambda^{2}}\right)e^{-\lambda\alpha} = -\frac{1}{\lambda^{3}}\left(1 + \frac{2}{\alpha\lambda} + \frac{2}{\alpha^{2}\lambda^{2}}\right)\frac{(\lambda\alpha)^{2}}{e^{\lambda\alpha}}$$

On a immédiatement :
$$\lim_{\alpha \to +\infty} \left[-\frac{1}{\lambda^3} \left(1 + \frac{2}{\alpha \lambda} + \frac{2}{\alpha^2 \lambda^2} \right) \right] = -\frac{1}{\lambda^3} \times 1 = -\frac{1}{\lambda^3}$$
 et, par croissance

$$\text{compar\'ee}: \lim_{\alpha \to +\infty} \frac{\left(\lambda \alpha\right)^2}{e^{\lambda \alpha}} = 0 \text{ . On en d\'eduit alors}: \lim_{\alpha \to +\infty} \left[-\frac{1}{\lambda^3} \left(1 + \frac{2}{\alpha \lambda} + \frac{2}{\alpha^2 \lambda^2}\right) \frac{\left(\lambda \alpha\right)^2}{e^{\lambda \alpha}} \right] = 0$$

et, finalement :
$$\lim_{\alpha \to +\infty} \left[\frac{2}{\lambda^3} - \left(\frac{\alpha^2}{\lambda} + \frac{2\alpha}{\lambda^2} + \frac{2}{\lambda^3} \right) f_{\lambda}(\alpha) \right] = \frac{2}{\lambda^3}$$
, soit : $\lim_{\alpha \to +\infty} J_{\lambda}(\alpha) = \frac{2}{\lambda^3}$.

Si
$$\lambda < 0$$
: $\lim_{\alpha \to +\infty} I_{\lambda}(\alpha) = \lim_{\alpha \to +\infty} J_{\lambda}(\alpha) = +\infty$.

Si
$$\lambda > 0$$
: $\lim_{\alpha \to +\infty} I_{\lambda}(\alpha) = \frac{1}{\lambda^{2}}$ et $\lim_{\alpha \to +\infty} J_{\lambda}(\alpha) = \frac{2}{\lambda^{3}}$.

C.1. **a.** Le réel λ étant strictement positif et la fonction exponentielle prenant des valeurs strictement positives, on a immédiatement : $\forall x \in [0; +\infty[, \varphi_{\lambda}(x) = \lambda e^{-\lambda x} > 0]$.

On a : $\varphi_{\lambda} = \lambda f_{\lambda}$. La continuité de la fonction φ_{λ} sur $\left[0; +\infty\right[$ découle donc directement de celle de la fonction f_{λ} sur cet intervalle.

Pour tout réel x positif, on a, en reprenant les notations et le résultat de la question B.1.a. :

$$\int_0^x \varphi_{\lambda}(t) dt = \int_0^x \lambda e^{-\lambda t} dt = \lambda \int_0^x e^{-\lambda t} dt = \lambda \mathscr{A}_{\lambda}(x) = \lambda \times \frac{1}{\lambda} (1 - e^{-\lambda x}) = 1 - f_{\lambda}(x).$$

Comme le réel λ est strictement positif, on a : $\lim_{x \to +\infty} f_{\lambda}(x) = 0$ et donc :

$$\lim_{x \to +\infty} \int_0^x \varphi_{\lambda}(t) dt = 1$$

Les trois résultats précédents nous permettent de conclure que la fonction φ_{λ} est une densité de probabilité sur l'intervalle $\left[0\,;+\infty\right[$.

La fonction φ_{λ} est une densité de probabilité sur l'intervalle $\left[0\,;+\infty\right[$.

b. Le réel λ étant strictement positif, au regard de l'expression de $\varphi_{\lambda}(x)$, nous pouvons affirmer que la variable aléatoire X_{λ} suit la loi exponentielle de paramètre λ .

La variable aléatoire $\,X_{\scriptscriptstyle\lambda}\,$ suit la loi exponentielle de paramètre $\,\lambda\,$.

C.2. **a.** On a :
$$\int_0^x t \varphi_{\lambda}(t) dt = \lambda \int_0^x t e^{-\lambda t} dt = \lambda I_{\lambda}(x).$$

Pour $\lambda > 0$, nous avons vu, à la question B.2.c; que $\lim_{x \to +\infty} I_{\lambda}(x)$ était finie et valait : $\frac{1}{\lambda^2}$.

On a donc:

$$E(X_{\lambda}) = \lim_{x \to +\infty} \int_{0}^{x} t \varphi_{\lambda}(t) dt = \lim_{x \to +\infty} \lambda I_{\lambda}(x) = \lambda \times \frac{1}{\lambda^{2}} = \frac{1}{\lambda}$$

$$E(X_{\lambda}) = \frac{1}{\lambda}$$

b. On cherche ici, en prenant comme unité de temps la minute, la probabilité $p(Y_{\lambda} \ge 7 \mid Y_{\lambda} \ge 2)$.

On peut procéder de diverses façons.

Dans tous les cas, il peut être utile de rappeler le calcul suivant :

$$p(Y_{\lambda} \ge T) = 1 - p(Y_{\lambda} < T)$$

$$= 1 - \int_{0}^{T} \lambda e^{-\lambda t} dt$$

$$= 1 - \lambda \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{0}^{T}$$

$$= 1 - \left(1 - e^{-\lambda T} \right)$$

$$= e^{-\lambda T}$$

On peut alors écrire :

$$p(Y_{\lambda} \ge 7 \mid Y_{\lambda} \ge 2) = 1 - p(Y_{\lambda} < 7 \mid Y_{\lambda} \ge 2)$$

$$= 1 - \frac{p(Y_{\lambda} < 7 \cap Y_{\lambda} \ge 2)}{p(Y_{\lambda} \ge 2)}$$

$$= 1 - \frac{\int_{2}^{7} \lambda e^{-\lambda t} dt}{e^{-2\lambda}}$$

$$= 1 - \frac{\lambda \left[-\frac{1}{\lambda} e^{-\lambda t} \right]_{2}^{7}}{e^{-2\lambda}}$$

$$= 1 - \frac{e^{-2\lambda} - e^{-7\lambda}}{e^{-2\lambda}}$$

$$= 1 - (1 - e^{-5\lambda})$$

$$= e^{-5\lambda}$$

En tenant compte du résultat obtenu à la question précédente, on a : $\lambda = \frac{1}{E(Y_{\lambda})} = \frac{1}{5}$.

Finalement:
$$p(Y_{\lambda} \ge 7 | Y_{\lambda} \ge 2) = e^{-5\lambda} = e^{-5 \times \frac{1}{5}} = e^{-1}$$
.

On peut également ($2^{\text{ème}}$ approche) utiliser le fait que la loi exponentielle est celle d'une variable aléatoire représentant une durée de vie sans vieillissement. On a alors la propriété suivante, valable pour tous réels T et τ positifs : $p(Y_{\lambda} \ge \tau + T \mid Y_{\lambda} \ge \tau) = p(Y_{\lambda} \ge T)$.

D'après la calcul repris ci-dessus, il en découle : $p(Y_{\lambda} \ge \tau + T \mid Y_{\lambda} \ge \tau) = p(Y_{\lambda} \ge T) = e^{-\lambda T}$. En utilisant cette propriété avec $\tau = 2$ et T = 5, il vient immédiatement :

$$p(Y_{\lambda} \ge 2 + 5 | Y_{\lambda} \ge 2) = p(Y_{\lambda} \ge 5) = e^{-5x\frac{1}{5}} = e^{-1}$$

En définitive :

La probabilité d'attendre encore 5 minutes sachant que l'on a déjà attendu 2 minutes est égale à $e^{-1} \simeq 0,368$.

C.3. On a:
$$\int_0^x t^2 \varphi_{\lambda}(t) dt = \lambda \int_0^x t^2 e^{-\lambda t} dt = \lambda J_{\lambda}(x).$$

Pour $\lambda > 0$, nous avons vu, à la question B.2.c; que $\lim_{\alpha \to +\infty} J_{\lambda}(\alpha)$ était finie et valait : $\frac{2}{\lambda^3}$. On a donc :

$$\lim_{x \to +\infty} \int_0^x t^2 \varphi_{\lambda}(t) dt = \lim_{x \to +\infty} \lambda J_{\lambda}(x) = \lambda \times \frac{2}{\lambda^3} = \frac{2}{\lambda^2}$$

Il vient alors:

$$\begin{split} V(X_{\lambda}) &= \lim_{x \to +\infty} \int_{0}^{x} t^{2} \varphi_{\lambda}(t) dt - \left[E(X_{\lambda}) \right]^{2} \\ &= \frac{2}{\lambda^{2}} - \left(\frac{1}{\lambda} \right)^{2} \\ &= \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} \\ &= \frac{1}{\lambda^{2}} \end{split}$$

$$V(X_{\lambda}) = \frac{1}{\lambda^2}$$

Deuxième partie

B.1. Pour tout réel λ , on considère la fonction g_{λ} définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, g_{\lambda}(x) = e^{-\lambda x^2}$$

On peut d'ores et déjà noter que pour $\lambda = 0$, on a : $\forall x \in \mathbb{R}, g_0(x) = e^{-0 \times x^2} = e^0 = 1$.

La fonction g_0 est la fonction constante prenant la valeur 1 sur $\mathbb R$. Son étude est immédiate.

Dans ce qui suit, on suppose donc $\lambda \neq 0$.

Le domaine de définition de g_{λ} est symétrique (il s'agit de \mathbb{R}) et pour tout x réel, on

a:
$$g_{\lambda}(-x) = e^{-\lambda(-x)^2} = e^{-\lambda x^2} = g_{\lambda}(x)$$
.

On déduit immédiatement de ce qui précède :

Pour tout réel λ , la fonction g_{λ} est paire.

Déterminons maintenant les limites de la fonction g_{λ} aux bornes de son domaine de définition, c'est-à-dire en $-\infty$ et en $+\infty$. La fonction g_{λ} étant paire, ces limites, si elles existent, sont égales. On s'intéresse donc par exemple à : $\lim_{x\to +\infty} g_{\lambda}(x)$.

On doit déterminer la limite d'une fonction composée en $+\infty$.

Pour $\lambda > 0$, on a: $\lim_{x \to +\infty} \left(-\lambda x^2 \right) = -\infty$. Or, $\lim_{X \to -\infty} e^X = 0$.

On en déduit (composition) : $\lim_{x \to +\infty} e^{-\lambda x^2} = 0$.

Pour
$$\lambda < 0$$
, on a: $\lim_{x \to +\infty} \left(-\lambda x^2 \right) = +\infty$. Or, $\lim_{x \to +\infty} e^x = 0$.

On en déduit (composition) : $\lim_{x \to +\infty} e^{-\lambda x^2} = +\infty$.

Pour
$$\lambda > 0$$
, on a: $\lim_{x \to +\infty} e^{-\lambda x^2} = \lim_{x \to -\infty} e^{-\lambda x^2} = 0$.

Pour
$$\lambda < 0$$
, on a: $\lim_{x \to +\infty} e^{-\lambda x^2} = \lim_{x \to -\infty} e^{-\lambda x^2} = +\infty$.

La fonction g_{λ} est la composée de deux fonctions dérivables sur \mathbb{R} (la fonction polynômiale $x \mapsto -\lambda x^2$ et la fonction exponentielle), elle donc elle-même dérivable sur \mathbb{R} . Pour tout x réel, on a :

$$g_{\lambda}'(x) = -2\lambda x e^{-\lambda x^2} = -2\lambda x g_{\lambda}(x)$$

Notons, d'emblée, deux choses, la fonction exponentielle prenant des valeurs strictement positives :

- D'une part, la dérivée g_{λ} ' ne s'annule que pour x = 0.
- D'autre part, le signe de $g_{\lambda}'(x)$ est celui de $-2\lambda x$.

Pour
$$\lambda > 0$$
, on a: $g_{\lambda}'(x) > 0 \Leftrightarrow -2\lambda x > 0 \Leftrightarrow x < 0$.

Ainsi, g_{λ} est strictement croissante sur \mathbb{R}_{+} et strictement décroissante sur \mathbb{R}_{+} .

Pour
$$\lambda < 0$$
, on a: $g_{\lambda}'(x) > 0 \Leftrightarrow -2\lambda x > 0 \Leftrightarrow x > 0$.

Ainsi, g_{λ} est strictement croissante sur \mathbb{R}_{+} et strictement décroissante sur \mathbb{R}_{-} .

Pour $\lambda > 0$, g_{λ} est strictement croissante sur \mathbb{R}_{-} et strictement décroissante sur \mathbb{R}_{+} . Pour $\lambda < 0$, g_{λ} est strictement croissante sur \mathbb{R}_{+} et strictement décroissante sur \mathbb{R}_{-} .

B.2. **a.** La fonction dérivée g_{λ} ' est elle-même dérivable sur \mathbb{R} comme produit de deux fonctions dérivables sur \mathbb{R} (la fonction linéaire $x \mapsto -2\lambda x$ et la fonction g_{λ}).

Pour tout x réel, on a (dérivation d'un produit) :

$$g_{\lambda} "(x) = -2\lambda \Big[1 \times g_{\lambda}(x) + x \times g_{\lambda} "(x) \Big]$$

$$= -2\lambda \Big[1 \times g_{\lambda}(x) - x \times 2\lambda x g_{\lambda}(x) \Big]$$

$$= -2\lambda \Big[1 - 2\lambda x^{2} \Big] g_{\lambda}(x)$$

$$= -2\lambda \Big[1 - 2\lambda x^{2} \Big] e^{-\lambda x^{2}}$$

$$\forall x \in \mathbb{R}, g_{\lambda} "(x) = -2\lambda \left[1 - 2\lambda x^{2}\right] g_{\lambda}(x) = -2\lambda \left[1 - 2\lambda x^{2}\right] e^{-\lambda x^{2}}$$

Remarque : cette expression reste valable dans le cas $\lambda = 0$ (nullité de toutes les dérivées).

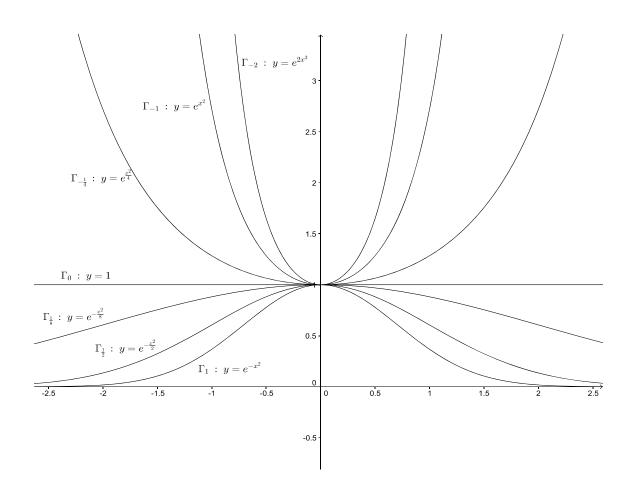
b. Le seul facteur susceptible de pouvoir s'annuler dans l'expression de g_{λ} "(x) est $1-2\lambda x^2$. L'annulation est possible si, et seulement si, on a : $\lambda > 0$. Dans ce cas :

$$1 - 2\lambda x^2 = 0 \Leftrightarrow \left(1 - \sqrt{2\lambda}x\right)\left(1 + \sqrt{2\lambda}x\right) = 0 \Leftrightarrow x = \frac{1}{\sqrt{2\lambda}} \text{ ou } x = -\frac{1}{\sqrt{2\lambda}}$$

Pour $\lambda > 0$, la courbe Γ_{λ} traverse sa tangente aux points d'abscisses $\frac{1}{\sqrt{2\lambda}}$ et $-\frac{1}{\sqrt{2\lambda}}$.

Pour $\,\lambda < 0\,$, la courbe $\,\Gamma_{\lambda}\,$ ne traverse jamais sa tangente.

c. Nous fournissons ci-dessous les représentations graphiques de diverses courbes Γ_{λ} (pour les valeurs suivantes du réel λ : -2, -1, $-\frac{1}{4}$, 0, $\frac{1}{8}$, $\frac{1}{2}$ et 1).



PanaMaths [12-26] Mai 2012

B.1. **a.** La fonction F_{λ} est la primitive sur \mathbb{R} s'annulant en 0 de la fonction $g_{\lambda}: t \mapsto e^{-\lambda t^2}$, elle est donc dérivable sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, F_{\lambda}'(x) = g_{\lambda}(x) = e^{-\lambda x^2}$$

b. La fonction $x \mapsto \frac{1}{\sqrt{\lambda}} F_1(\sqrt{\lambda}x)$ est dérivable sur \mathbb{R} comme composée de fonctions dérivables sur \mathbb{R} (la fonction linéaire $x \mapsto \sqrt{\lambda}x$ et, à un facteur près, la fonction F_1) et on a, pour tout réel x (en commettant un abus d'écriture ... classique) :

$$\left(\frac{1}{\sqrt{\lambda}}F_{1}\left(\sqrt{\lambda}x\right)\right)' = \frac{1}{\sqrt{\lambda}} \times \sqrt{\lambda} \times F_{1}'\left(\sqrt{\lambda}x\right) = g_{1}\left(\sqrt{\lambda}x\right) = e^{-(\sqrt{\lambda}x)^{2}} = e^{-\lambda x^{2}} = g_{\lambda}\left(x\right)$$

On en déduit immédiatement que la fonction $x \mapsto \frac{1}{\sqrt{\lambda}} F_1(\sqrt{\lambda}x)$ est une primitive sur

 \mathbb{R} de la fonction g_{λ} . Or, pour x = 0, on a : $\frac{1}{\sqrt{\lambda}} F_1(\sqrt{\lambda} \times 0) = \frac{1}{\sqrt{\lambda}} F_1(0) = 0$.

Ainsi, la fonction $x \mapsto \frac{1}{\sqrt{\lambda}} F_1(\sqrt{\lambda}x)$ est la primitive sur \mathbb{R} s'annulant en 0 de la

fonction $g_{\lambda}: t \mapsto e^{-\lambda t^2}$, il s'agit donc (cf. la question précédente) de la fonction F_{λ} .

$$\forall x \in \mathbb{R}, F_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} F_{1}(\sqrt{\lambda}x)$$

B.2. Notons dans un premier temps que la fonction F_{λ} est définie sur \mathbb{R} qui est symétrique $(\forall x \in \mathbb{R}, -x \in \mathbb{R})$.

Soit alors x un réel strictement positif.

On a:
$$F_{\lambda}(-x) = \int_{0}^{-x} e^{-\lambda t^{2}} dt = -\int_{-x}^{0} e^{-\lambda t^{2}} dt$$
.

Comme la fonction $g_{\lambda}: t \mapsto e^{-\lambda t^2}$ est positive, l'intégrale $\int_{-x}^{0} e^{-\lambda t^2} dt$ correspond à l'aire sous la courbe de la fonction g_{λ} sur l'intervalle [-x;0]. Mais comme la fonction $g_{\lambda}: t \mapsto e^{-\lambda t^2}$ est paire ce domaine admet la même aire que le domaine sous la courbe de la fonction g_{λ} sur l'intervalle [0;x]. En d'autres termes : $\int_{-x}^{0} e^{-\lambda t^2} dt = \int_{0}^{x} e^{-\lambda t^2} dt$.

Finalement:
$$F_{\lambda}(-x) = -\int_{-x}^{0} e^{-\lambda t^2} dt = -\int_{0}^{x} e^{-\lambda t^2} dt = -F_{\lambda}(x)$$
.

Si x est cette fois un réel strictement négatif, on se ramène à la situation précédente en posant, par exemple : X = -x. On a alors, d'après ce qui précède :

$$F_{\lambda}(-x) = F_{\lambda}(X) = -F_{\lambda}(-X) = -F_{\lambda}(x)$$

PanaMaths [13-26] Mai 2012

Pour x = 0, on a trivialement : $F_{\lambda}(-0) = F_{\lambda}(0) = 0 = -F_{\lambda}(0)$.

En définitive, la fonction F_{λ} est définie sur \mathbb{R} et on a : $\forall x \in \mathbb{R}$, $F_{\lambda}(-x) = -F_{\lambda}(x)$. D'où :

La fonction F_{λ} est impaire.

B.3. On a vu à la question B.1.a. que la fonction F_{λ} admettait pour dérivée sur \mathbb{R} la fonction $g_{\lambda}: t \mapsto e^{-\lambda r^2}$. Or, celle-ci, du fait de la fonction exponentielle, prend, quelle que soit la valeur du réel λ , des valeurs strictement positives. D'où :

La fonction F_{λ} est strictement croissante sur $\mathbb R$.

B.4. **a.** Soit t un réel supérieur ou égal à $\frac{1}{\lambda}$. On souhaite comparer $g_{\lambda}(t) = e^{-\lambda t^2}$ et e^{-t} .

La fonction exponentielle étant strictement croissante sur \mathbb{R} , il suffit de comparer les réel λt^2 et t pour pouvoir conclure.

On a: $t \ge \frac{1}{\lambda} \Leftrightarrow \lambda t \ge 1$. Comme t est strictement positif: $t \ge \frac{1}{\lambda} \Leftrightarrow \lambda t \ge 1 \Rightarrow \lambda t^2 \ge t$.

Enfin: $\lambda t^2 \ge t \Leftrightarrow -\lambda t^2 \le -t \Leftrightarrow e^{-\lambda t^2} \le e^{-t}$.

On a bien:

$$\forall t \geq \frac{1}{\lambda}, g_{\lambda}(t) \leq e^{-t}$$

b. Soit *x* un réel supérieur à $\frac{1}{\lambda}$. On a :

$$F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) = \int_{0}^{x} e^{-\lambda t^{2}} dt - \int_{0}^{\frac{1}{\lambda}} e^{-\lambda t^{2}} dt = \int_{\frac{1}{\lambda}}^{x} e^{-\lambda t^{2}} dt$$

Puisque nous travaillons sur l'intervalle $\left[\frac{1}{\lambda};x\right]$, nous pouvons utiliser le résultat de la question précédente et les intégrales sont rangées comme les fonctions :

$$F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) = \int_{\frac{1}{\lambda}}^{x} e^{-\lambda t^{2}} dt \le \int_{\frac{1}{\lambda}}^{x} e^{-t} dt$$

$$\forall t \ge \frac{1}{\lambda}, F_{\lambda}(x) - F_{\lambda}(\frac{1}{\lambda}) \le \int_{\frac{1}{\lambda}}^{x} e^{-t} dt$$

Le calcul de l'intégrale $\int_{\frac{1}{2}}^{x} e^{-t} dt$ ne pose pas de problème :

$$\int_{\frac{1}{\lambda}}^{x} e^{-t} dt = \left[-e^{-t} \right]_{\frac{1}{\lambda}}^{x} = -e^{-x} - \left(-e^{-\frac{1}{\lambda}} \right) = e^{-\frac{1}{\lambda}} - e^{-x}$$

Comme $e^{-\frac{1}{\lambda}} - e^{-x} \le e^{-\frac{1}{\lambda}}$, il vient :

$$\forall x \ge \frac{1}{\lambda}, F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) \le \int_{\frac{1}{\lambda}}^{x} e^{-t} dt = e^{-\frac{1}{\lambda}} - e^{-x} \le e^{-\frac{1}{\lambda}}$$

Finalement, on a bien:

donc, eux aussi, les majorer).

$$\forall x \ge \frac{1}{\lambda}, F_{\lambda}(x) \le F_{\lambda}(\frac{1}{\lambda}) + e^{-\frac{1}{\lambda}}$$

c. Pour tout entier naturel n non nul, on pose $u_n = F_{\lambda}(n)$.

La fonction F_{λ} étant strictement croissante sur \mathbb{R} , on en déduit immédiatement qu'il en va de même pour la suite (u_n) .

A la question précédente, nous avons établi : $\forall t \geq \frac{1}{\lambda}$, $F_{\lambda}(x) \leq F_{\lambda}(\frac{1}{\lambda}) + e^{-\frac{1}{\lambda}}$. Ainsi, pour tout entier naturel n tel que $n \geq \frac{1}{\lambda}$, on aura : $u_n = F_{\lambda}(n) \leq F_{\lambda}(\frac{1}{\lambda}) + e^{-\frac{1}{\lambda}}$. On en déduit immédiatement que la suite (u_n) est majorée (attention! pas nécessairement par $F_{\lambda}(\frac{1}{\lambda}) + e^{-\frac{1}{\lambda}}$ puisque cette majoration n'est pas valable pour tous les u_n ! En revanche, les u_n dont le rang vérifie $n < \frac{1}{\lambda}$ sont en nombre fini, on peut

Puisque la suite (u_n) est croissante et majorée, elle est convergente.

La suite (u_n) admet une limite finie en $+\infty$.

d. Rappelons que, à la question B.1.b. nous avons établi la relation, valable pour tout réel x: $F_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} F_{1}(\sqrt{\lambda}x)$.

PanaMaths [15-26] Mai 2012

On a immédiatement :

$$\lim_{\substack{x \to +\infty \\ X \to +\infty}} \sqrt{\lambda} x = +\infty \\ \lim_{\substack{x \to +\infty \\ X \to +\infty}} F_1(X) = L_1$$

$$\Longrightarrow \lim_{\substack{x \to +\infty \\ X \to +\infty}} F_1(\sqrt{\lambda} x) = L_1$$

Comme : $\lim_{x \to +\infty} F_1(x) = L_1$, il vient alors :

$$F_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} F_{1}(\sqrt{\lambda}x) \Rightarrow \lim_{x \to +\infty} F_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} \lim_{x \to +\infty} F_{1}(\sqrt{\lambda}x) \Leftrightarrow L_{\lambda} = \frac{1}{\sqrt{\lambda}} L_{1}$$

$$L_{\lambda} = \frac{1}{\sqrt{\lambda}} L_{1}$$

e. A la question B.4.b. on a vu que l'on avait : $\forall x \ge \frac{1}{\lambda}$, $F_{\lambda}(x) - F_{\lambda}(\frac{1}{\lambda}) \le e^{-\frac{1}{\lambda}}$.

Mais comme la fonction $\,F_{\lambda}\,$ est strictement croissante sur $\,\mathbb{R}\,$, on a, plus précisément :

$$\forall x \ge \frac{1}{\lambda}, 0 \le F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) \le e^{-\frac{1}{\lambda}}$$

Comme $\lim_{x \to +\infty} \left[F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) \right] = L_{\lambda} - F_{\lambda}\left(\frac{1}{\lambda}\right)$, on obtient bien, après passage à la limite dans la double inégalité :

$$0 \le L_{\lambda} - F_{\lambda} \left(\frac{1}{\lambda}\right) \le e^{-\frac{1}{\lambda}}$$

f. On utilise directement le résultat de la question précédente avec $\lambda = \frac{1}{2}$:

$$0 \le L_{\frac{1}{2}} - F_{\frac{1}{2}}(2) \le e^{-2}$$

$$F_{\frac{1}{2}}(2) = \int_0^2 e^{-\frac{1}{2}t^2} dt$$
 est une valeur approchée de $L_{\frac{1}{2}}$ à e^{-2} près.

g. A la question B.4.d. on a établi l'égalité : $L_{\lambda} = \frac{1}{\sqrt{\lambda}} L_{1}$.

On a donc, en particulier :
$$L_{\frac{1}{2}} = \frac{1}{\sqrt{\frac{1}{2}}} L_{1} = \sqrt{2}L_{1}$$
, soit : $L_{1} = \frac{1}{\sqrt{2}} L_{\frac{1}{2}}$.

On en tire alors:
$$L_{\lambda} = \frac{1}{\sqrt{\lambda}} L_1 = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{2}} L_{\frac{1}{2}} = \frac{1}{\sqrt{\lambda}} \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{1}{2} \sqrt{\frac{\pi}{\lambda}}$$
.

$$L_{\lambda} = \frac{1}{2} \sqrt{\frac{\pi}{\lambda}}$$

C.1. **a.** La fonction Ψ est définie sur \mathbb{R} . Par ailleurs, pour tout x réel, on a :

$$\Psi(-x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(-x)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = \Psi(x)$$

La fonction Ψ est paire.

b. On a:
$$\Psi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} = \frac{1}{\sqrt{2\pi}} g_{\frac{1}{2}}(x)$$
.

La fonction exponentielle prenant des valeurs strictement positives, il en va de même pour la fonction ${\cal \Psi}$.

La fonction Ψ est continue sur $\mathbb R$ comme composée de fonctions continues sur $\mathbb R$.

Intéressons-nous maintenant aux intégrales : $\int_{-\infty}^0 \Psi(t) dt$ et $\int_0^{+\infty} \Psi(t) dt$.

Pour tout x réel positif, on a :

$$\int_0^x \Psi(t) dt = \int_0^x \frac{1}{\sqrt{2\pi}} g_{\frac{1}{2}}(t) dt = \frac{1}{\sqrt{2\pi}} \int_0^x g_{\frac{1}{2}}(x) dt = \frac{1}{\sqrt{2\pi}} F_{\frac{1}{2}}(x).$$

On a alors, en utilisant les derniers résultats de la partie B. :

$$\lim_{x \to +\infty} \int_0^x \Psi(t) dt = \lim_{x \to +\infty} \frac{1}{\sqrt{2\pi}} F_{\frac{1}{2}}(x) = \frac{1}{\sqrt{2\pi}} \lim_{x \to +\infty} F_{\frac{1}{2}}(x) = \frac{1}{\sqrt{2\pi}} L_{\frac{1}{2}} = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\pi}{2}} = \frac{1}{2}$$

La fonction Ψ étant paire, on a immédiatement, pour tout réel x négatif (symétrie des domaine par rapport à l'axe des ordonnées) :

$$\int_{x}^{0} \Psi(t) dt = \int_{0}^{-x} \Psi(t) dt$$

On en déduit immédiatement :

$$\lim_{x \to -\infty} \int_{x}^{0} \Psi(t) dt = \lim_{x \to -\infty} \int_{0}^{-x} \Psi(t) dt = \lim_{x \to +\infty} \int_{0}^{x} \Psi(t) dt = \frac{1}{2}$$

Ainsi,
$$\lim_{x\to +\infty} \int_0^x \Psi(t) dt = \frac{1}{2}$$
, $\lim_{x\to +\infty} \int_x^0 \Psi(t) dt = \frac{1}{2}$ et $\lim_{x\to +\infty} \int_0^x \Psi(t) dt + \lim_{x\to +\infty} \int_x^0 \Psi(t) dt = 1$.

D'après les trois résultats précédents (positivité, continuité et limites des intégrales), on peut conclure :

La fonction arPsi est une densité de probabilité sur $\mathbb R$.

C.2. Notons, dans un premier temps que la fonction $t \mapsto t \Psi(t)$ est impaire comme produit d'une fonction paire et d'une fonction impaire, toutes deux définies sur \mathbb{R} .

Pour tout x réel positif, on a :

$$\int_{0}^{x} t \Psi(t) dt = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} t e^{-\frac{t^{2}}{2}} dt = \frac{1}{\sqrt{2\pi}} \left[-e^{-\frac{t^{2}}{2}} \right]_{0}^{x} = \frac{1}{\sqrt{2\pi}} \left[-e^{-\frac{x^{2}}{2}} - \left(-e^{-\frac{0^{2}}{2}} \right) \right] = \frac{1}{\sqrt{2\pi}} \left(1 - e^{-\frac{x^{2}}{2}} \right)$$

On a alors: $\lim_{x \to +\infty} \left(-\frac{x^2}{2} \right) = -\infty$. Or, $\lim_{x \to -\infty} e^x = 0$ donc: $\lim_{x \to +\infty} e^{-\frac{x^2}{2}} = 0$ et, finalement:

$$\lim_{x \to +\infty} \int_0^x t \, \Psi(t) \, dt = \frac{1}{\sqrt{2\pi}}$$

En tenant compte du fait que la fonction $t \mapsto t \Psi(t)$ est impaire, on a alors, pour tout x

réel négatif :
$$\int_{x}^{0} t \Psi(t) dt = -\int_{0}^{x} t \Psi(t) dt = -\left[\frac{1}{\sqrt{2\pi}} \left(1 - e^{-\frac{x^{2}}{2}} \right) \right] = \frac{-1}{\sqrt{2\pi}} \left(1 - e^{-\frac{x^{2}}{2}} \right).$$

D'où:
$$\lim_{x\to-\infty}\int_x^0 t \Psi(t) dt = -\frac{1}{\sqrt{2\pi}}$$
.

Finalement:
$$E(X) = \lim_{x \to +\infty} \int_0^x t \Psi(t) dt + \lim_{x \to -\infty} \int_x^0 t \Psi(t) dt = \frac{1}{\sqrt{2\pi}} - \frac{1}{\sqrt{2\pi}} = 0$$
.

$$E(X) = 0$$

C.3. **a.** On a: $(X < 2) \cup (2 \le X \le a) = (X \le a)$. D'où, les événements (X < 2) et $(2 \le X \le a)$ étant disjoints : $P(X < 2) + P(2 \le X \le a) = P(X \le a)$ puis :

$$P(2 \le X \le a) = P(X \le a) - P(X < 2)$$
$$= \lim_{x \to -\infty} \int_{x}^{a} \Psi(t) dt - \lim_{x \to -\infty} \int_{x}^{2} \Psi(t) dt$$

Mais, pour tout réel x, on a, d'après la relation de Chasles :

$$\int_{x}^{a} \Psi(t) dt = \int_{x}^{0} \Psi(t) dt + \int_{0}^{a} \Psi(t) dt \text{ et } \int_{x}^{2} \Psi(t) dt = \int_{x}^{0} \Psi(t) dt + \int_{0}^{2} \Psi(t) dt$$

PanaMaths [18-26] Mai 2012

Ainsi:

$$\lim_{x \to -\infty} \int_{x}^{a} \Psi(t) dt = \lim_{x \to -\infty} \int_{x}^{0} \Psi(t) dt + \int_{0}^{a} \Psi(t) dt = \frac{1}{\sqrt{2\pi}} L_{\frac{1}{2}} + \int_{0}^{a} \Psi(t) dt$$

$$\lim_{x \to -\infty} \int_{x}^{2} \Psi(t) dt = \lim_{x \to -\infty} \int_{x}^{0} \Psi(t) dt + \int_{0}^{2} \Psi(t) dt = \frac{1}{\sqrt{2\pi}} L_{\frac{1}{2}} + \int_{0}^{2} \Psi(t) dt$$

Il vient alors:

$$P(2 \le X \le a) = \lim_{x \to -\infty} \int_{x}^{a} \Psi(t) dt - \lim_{x \to -\infty} \int_{x}^{2} \Psi(t) dt$$

$$= \frac{1}{\sqrt{2\pi}} L_{\frac{1}{2}} + \int_{0}^{a} \Psi(t) dt - \left(\frac{1}{\sqrt{2\pi}} L_{\frac{1}{2}} + \int_{0}^{2} \Psi(t) dt\right)$$

$$= \int_{0}^{a} \Psi(t) dt - \int_{0}^{2} \Psi(t) dt$$

$$= \int_{a}^{2} \Psi(t) dt$$

D'où:

$$P(2 \le X \le a) = \int_0^a \Psi(t) dt - \int_0^2 \Psi(t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_a^a g_{\frac{1}{2}}(t) dt - \frac{1}{\sqrt{2\pi}} \int_a^2 g_{\frac{1}{2}}(t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \left(F_{\frac{1}{2}}(a) - F_{\frac{1}{2}}(2) \right)$$

A la question B.4.b. on avait montré que pour tout réel x supérieur ou égal à $\frac{1}{\lambda}$, on

avait:
$$F_{\lambda}(x) - F_{\lambda}\left(\frac{1}{\lambda}\right) \le e^{-\frac{1}{\lambda}}$$
.

Avec $\lambda = \frac{1}{2}$, on a donc, pour tout réel a supérieur ou égal à $\frac{1}{\lambda} = 2$:

$$F_{\frac{1}{2}}(a) - F_{\frac{1}{2}}(2) \le e^{-2}$$

On en déduit : $P(2 \le X \le a) = \frac{1}{\sqrt{2\pi}} \left(F_{\frac{1}{2}}(a) - F_{\frac{1}{2}}(2) \right) \le \frac{1}{\sqrt{2\pi}} e^{-2}$.

$$\forall a \ge 2, P(2 \le X \le a) \le \frac{1}{\sqrt{2\pi}} e^{-2}$$

b. On a : $(0 \le X < 2) \cup (2 \le X \le a) = (0 \le X \le a)$. D'où, les événements $(0 \le X < 2)$ et $(2 \le X \le a)$ étant disjoints : $P(0 \le X < 2) + P(2 \le X \le a) = P(0 \le X \le a)$.

Pour tout réel x supérieur ou égal à 2, on a : $P(0 \le X \le 2) \le P(0 \le X \le x)$ puis :

$$P(0 \le X \le 2) \le P(0 \le X \le x) = \int_0^x \Psi(t) dt \le \lim_{x \to +\infty} \int_0^x \Psi(t) dt = \frac{1}{2}.$$

On a donc une première inégalité : $P(0 \le X \le 2) \le \frac{1}{2}$.

Par ailleurs, d'après la question précédente, on a, pour tout réel a supérieur ou égale à

2:
$$P(2 \le X \le a) \le \frac{1}{\sqrt{2\pi}} e^{-2}$$
. On en déduit: $\lim_{a \to +\infty} P(2 \le X \le a) = P(2 \le X) \le \frac{1}{\sqrt{2\pi}} e^{-2}$.

Il vient alors : $P(0 \le X < 2) + P(2 \le X) \le P(0 \le X < 2) + \frac{1}{\sqrt{2\pi}}e^{-2}$, soit :

$$P(0 \le X) \le P(0 \le X < 2) + \frac{1}{\sqrt{2\pi}}e^{-2}$$

Mais
$$P(0 \le X) = \lim_{x \to +\infty} \int_0^x \Psi(t) dt = \frac{1}{2}$$
. D'où: $\frac{1}{2} \le P(0 \le X < 2) + \frac{1}{\sqrt{2\pi}} e^{-2}$ et

finalement:
$$\frac{1}{2} - \frac{1}{\sqrt{2\pi}} e^{-2} \le P(0 \le X < 2) = P(0 \le X \le 2)$$
.

La deuxième inégalité est ainsi établie.

$$\frac{1}{2} - \frac{1}{\sqrt{2\pi}} e^{-2} \le P(0 \le X \le 2) \le \frac{1}{2}$$

En tenant compte de $P(X < 0) = P(X \le 0) = \frac{1}{2}$, on a alors :

$$\frac{1}{2} - \frac{1}{\sqrt{2\pi}} e^{-2} + P(X < 0) \le +P(X < 0) P(0 \le X \le 2) \le \frac{1}{2} + P(X < 0)$$

$$\Leftrightarrow \frac{1}{2} - \frac{1}{\sqrt{2\pi}} e^{-2} + \frac{1}{2} \le P(X < 0) + P(0 \le X \le 2) \le \frac{1}{2} + \frac{1}{2}$$

$$\Leftrightarrow 1 - \frac{1}{\sqrt{2\pi}} e^{-2} \le P(X < 0) + P(0 \le X \le 2) \le 1$$

Comme $P(X < 0) + P(0 \le X \le 2) = P(X \le 2) = P(X < 2)$, on conclut :

$$1 - \frac{1}{\sqrt{2\pi}} e^{-2} \le P(X < 2) \le 1$$

Remarque : l'amplitude de l'encadrement vaut : $\frac{1}{\sqrt{2\pi}}e^{-2} \approx 0,054$ (valeur arrondie au millième).

D.1. Comme $\chi_1(x) = xe^{-\frac{x^2}{2}}$, on a: $b_1(x) = \int_0^x \chi_1(t) dt = \int_0^x te^{-\frac{t^2}{2}} dt = \sqrt{2\pi} \int_0^x t \Psi(t) dt$.

Or, nous avons calculé l'intégrale $\int_0^x t \Psi(t) dt$ à la question C.2. :

$$\int_0^x t \Psi(t) dt = \frac{1}{\sqrt{2\pi}} \left(1 - e^{-\frac{x^2}{2}} \right)$$

On en déduit immédiatement : $b_1(x) = 1 - e^{-\frac{x^2}{2}}$.

$$b_1(x) = 1 - e^{-\frac{x^2}{2}}$$

D.2. **a.** Soit *n* un entier naturel supérieur ou égal à 2 et *x* un réel positif. On a :

$$b_n(x) = \int_0^x \chi_n(t) dt = \int_0^x t^n e^{-\frac{t^2}{2}} dt = \int_0^x t^{n-1} \times t e^{-\frac{t^2}{2}} dt$$

La fonction $t \mapsto t^{n-1}$ est dérivable sur \mathbb{R}_+ et sa dérivée, la fonction $t \mapsto (n-1)t^{n-2}$ est continue sur \mathbb{R}_+ .

La fonction $t\mapsto t\,e^{-\frac{t^2}{2}}$ est continue sur \mathbb{R}_+ comme produit de deux fonctions continues sur cet intervalle. Elle y admet pour primitive la fonction $t\mapsto -e^{-\frac{t^2}{2}}$.

Forts de ce qui précède, nous pouvons procéder à une intégration par partie :

$$b_{n}(x) = \int_{0}^{x} t^{n-1} \times t e^{-\frac{t^{2}}{2}} dt$$

$$= \left[-t^{n-1} e^{-\frac{t^{2}}{2}} \right]_{0}^{x} - \int_{0}^{x} (n-1) t^{n-2} \times \left(-e^{-\frac{t^{2}}{2}} \right) dt$$

$$= -x^{n-1} e^{-\frac{x^{2}}{2}} - \left(-0^{n-1} e^{-\frac{0^{2}}{2}} \right) + (n-1) \int_{0}^{x} t^{n-2} \times e^{-\frac{t^{2}}{2}} dt$$

$$= -x^{n-1} e^{-\frac{x^{2}}{2}} + (n-1) b_{n-2}(x)$$

Pour tout entier naturel n supérieur ou égal à 2 et pour tout x positif, on a :

$$b_n(x) = -x^{n-1}e^{-\frac{x^2}{2}} + (n-1)b_{n-2}(x)$$

b. La relation que nous venons d'obtenir lie $b_{n-2}(x)$ et $b_n(x)$ dont les indices sont donc de même parité.

Nous pouvons donc mener un raisonnement par récurrence en considérant successivement les suites $(b_{2n}(x))_{n\in\mathbb{N}}$ et $(b_{2n+1}(x))_{n\in\mathbb{N}}$. Ces deux raisonnements étant très similaires, nous n'en détaillons qu'un.

Initialisation

On a:
$$b_2(x) = \int_0^x \chi_2(t) dt = \int_0^x t^2 e^{-\frac{t^2}{2}} dt$$
.

D'après la question précédente, on a :

$$b_2(x) = -xe^{-\frac{x^2}{2}} + b_0(x) = -xe^{-\frac{x^2}{2}} + \int_0^x \chi_0(t)dt = -xe^{-\frac{x^2}{2}} + \int_0^x e^{-\frac{t^2}{2}}dt = -xe^{-\frac{x^2}{2}} + F_{\frac{1}{2}}(x)$$

On a alors immédiatement, en tenant compte de $L_{\frac{1}{2}} = \sqrt{\frac{\pi}{2}}$ (cf. B.4):

$$\lim_{x \to +\infty} b_0(x) = \lim_{x \to +\infty} F_{\frac{1}{2}}(x) = L_{\frac{1}{2}} = \sqrt{\frac{\pi}{2}} = B_0$$

On a, par ailleurs, pour tout x réel strictement positif : $xe^{-\frac{x^2}{2}} = \frac{2}{x} \times \frac{x^2}{2}e^{-\frac{x^2}{2}} = \frac{2}{x} \times \frac{\frac{x^2}{2}}{e^{\frac{x^2}{2}}}$.

On a immédiatement : $\lim_{x \to +\infty} \frac{2}{x} = 0$.

On a aussi : $\lim_{x \to +\infty} \frac{x^2}{2} = +\infty$ et (croissance comparée) : $\lim_{X \to +\infty} \frac{X}{e^X} = 0$. On en déduit alors

(composition):
$$\lim_{x \to +\infty} \frac{x^2}{\frac{x^2}{e^2}} = 0.$$

Finalement (produit): $\lim_{x \to +\infty} \left(x e^{-\frac{x^2}{2}} \right) = \lim_{x \to +\infty} \left(\frac{2}{x} \times \frac{\frac{x^2}{2}}{e^{\frac{x^2}{2}}} \right) = 0.$

En définitive :
$$\lim_{x \to +\infty} b_2(x) = \lim_{x \to +\infty} \left[-xe^{-\frac{x^2}{2}} + b_0(x) \right] = \lim_{x \to +\infty} b_0(x) = \sqrt{\frac{\pi}{2}} = B_0.$$

 $b_2(x)$ admet bien une limite finie en $+\infty$.

La propriété est initialisée.

Hérédité

Soit *n* un entier naturel quelconque <u>fixé</u>.

On suppose que $\lim_{x\to +\infty} b_{2n}(x)$ existe et est finie.

On s'intéresse à $\lim_{x \to +\infty} b_{2(n+1)}(x) = \lim_{x \to +\infty} b_{2n+2}(x)$.

D'après la question précédente, on a :

$$b_{2n+2}(x) = -x^{2n+2-1}e^{-\frac{x^2}{2}} + (2n+2-1)b_{2n+2-2}(x) = -x^{2n+1}e^{-\frac{x^2}{2}} + (2n+1)b_{2n}(x)$$

Comme la limite quand x tend vers $+\infty$ de $b_{2n}(x)$ existe et est finie, on s'intéresse à

celle de la fonction $x \mapsto x^{2n+1}e^{-\frac{x^2}{2}}$.

Pour tout x strictement positif, on a :

$$x^{2n+1}e^{-\frac{x^2}{2}} = \frac{1}{x} \times x^{2n+2}e^{-\frac{x^2}{2}} = \frac{1}{x} \times \frac{\left(x^2\right)^{n+1}}{e^{\frac{x^2}{2}}} = \frac{2^{n+1}}{x} \times \frac{\left(\frac{x^2}{2}\right)^{n+1}}{e^{\frac{x^2}{2}}}$$

On a immédiatement : $\lim_{x \to +\infty} \frac{2^{n+1}}{x} = 0$.

On a aussi : $\lim_{x \to +\infty} \frac{x^2}{2} = +\infty$ et (croissance comparée) : $\lim_{X \to +\infty} \frac{X^{n+1}}{e^X} = 0$. On en déduit

alors (composition): $\lim_{x \to +\infty} \frac{\left(\frac{x^2}{2}\right)^{n+1}}{e^{\frac{x^2}{2}}} = 0.$

Finalement (produit):
$$\lim_{x \to +\infty} \left(x^{2n+1} e^{-\frac{x^2}{2}} \right) = \lim_{x \to +\infty} \left[\frac{2^{n+1}}{x} \times \frac{\left(\frac{x^2}{2} \right)^{n+1}}{e^{\frac{x^2}{2}}} \right] = 0.$$

En définitive :

$$\lim_{x \to +\infty} b_{2(n+1)}(x) = \lim_{x \to +\infty} \left[-x^{2n+1}e^{-\frac{x^2}{2}} + (2n+1)b_{2n}(x) \right] = (2n+1)\lim_{x \to +\infty} b_{2n}(x) = (2n+1)B_{2n}(x)$$

 $b_{2(n+1)}(x)$ admet donc une limite finie en $+\infty$.

La propriété est donc vraie au rang n+1, elle est héréditaire.

Initialisée et héréditaire, la propriété est vraie pour tout entier naturel n:

$$\forall n \in \mathbb{N}, \lim_{x \to +\infty} b_{2n}(x)$$
 existe et est finie

On montre de façon similaire que pour tout n entier naturel, $\lim_{x\to +\infty} b_{2n+1}(x)$ existe et est finie.

L'étape d'hérédité est très proche et nous ne la reprenons pas.

Pour ce qui est de l'initialisation, rappelons qu'à la question D.1. nous avons obtenu :

$$b_1(x) = 1 - e^{-\frac{x^2}{2}}$$
 et qu'il en découle facilement : $\lim_{x \to +\infty} b_1(x) = \lim_{x \to +\infty} \left(1 - e^{-\frac{x^2}{2}}\right) = 1 - 0 = 1$.

c. Reprenons la relation obtenue à la question D.2.a. :

$$b_n(x) = -x^{n-1}e^{-\frac{x^2}{2}} + (n-1)b_{n-2}(x)$$

En tenant compte de $\lim_{x \to +\infty} \left(-x^{n-1}e^{-\frac{x^2}{2}} \right) = 0$, il vient :

$$\lim_{x \to +\infty} b_n(x) = B_n = \lim_{x \to +\infty} \left(-x^{n-1} e^{-\frac{x^2}{2}} + (n-1)b_{n-2}(x) \right) = (n-1)\lim_{x \to +\infty} b_{n-2}(x) = (n-1)B_{n-2}(x)$$

On obtient bien l'égalité cherchée.

Pour tout entier naturel n supérieur ou égal à 2 :

$$B_n = (n-1)B_{n-2}$$

d. On a d'abord :
$$b_0(x) = \int_0^x \chi_0(t) dt = \int_0^x e^{-\frac{t^2}{2}} dt = F_{\frac{1}{2}}(x)$$
.

Il vient alors :
$$B_0 = \lim_{x \to +\infty} b_0(x) = \lim_{x \to +\infty} F_{\frac{1}{2}}(x) = L_{\frac{1}{2}} = \sqrt{\frac{\pi}{2}}$$
.

En utilisant le résultat de la question précédente, on obtient alors :

$$B_2 = (2-1)B_{2-2} = B_0 = \sqrt{\frac{\pi}{2}}$$

Puis:

$$B_4 = (4-1)B_{4-2} = 3B_2 = 3\sqrt{\frac{\pi}{2}}$$

On a ensuite, en tenant compte de $\lim_{x \to \infty} e^{-\frac{x^2}{2}} = 0$:

$$B_1 = \lim_{x \to +\infty} b_1(x) = \lim_{x \to +\infty} \left(1 - e^{-\frac{x^2}{2}}\right) = 1$$

En utilisant le résultat de la question précédente, on obtient alors :

$$B_3 = (3-1)B_{3-2} = 2B_1 = 2$$

$$B_1 = 1$$
, $B_2 = \sqrt{\frac{\pi}{2}}$, $B_3 = 2$ et $B_4 = 3\sqrt{\frac{\pi}{2}}$.

D.3. **a.** Nous pouvons mener deux raisonnements (très similaires) par récurrence.

Initialisation

On suppose ici k = 0.

On a obtenu, à la question précédente : $B_1 = 1$.

Par ailleurs, la formule proposée donne : $2^0 \times 0! = 1 \times 1 = 1$.

L'égalité est bien vérifiée au rang 0.

Hérédité

Supposons que l'égalité soit vraie pour un entier naturel k quelconque fixé.

On a donc : $B_{2k+1} = 2^k k!$ et on s'intéresse à $B_{2(k+1)+1} = B_{2k+3}$.

D'après la question D.2.c. on a : $B_{2k+3} = (2k+3-1)B_{2k+1} = 2(k+1)B_{2k+1}$.

D'où, en tenant compte de l'hypothèse de récurrence :

$$B_{2(k+1)+1} = B_{2k+3} = 2(k+1)B_{2k+1} = 2(k+1) \times 2^k k! = 2^{k+1}(k+1)!$$

L'égalité est bien vérifiée au rang k+1, elle est héréditaire.

Conclusion

L'égalité est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

Nous procédons donc de façon similaire pour la deuxième égalité.

Initialisation

On suppose ici k = 0.

On a obtenu, à la question précédente : $B_0 = \sqrt{\frac{\pi}{2}}$.

Par ailleurs, la formule proposée donne : $\frac{(2\times0)!}{2^{0+1}\times0!}\sqrt{2\pi} = \frac{1}{2}\sqrt{2\pi} = \sqrt{\frac{\pi}{2}}$.

L'égalité est bien vérifiée au rang 0.

Hérédité

Supposons que l'égalité soit vraie pour un entier naturel k quelconque fixé.

On a donc: $B_{2k} = \frac{(2k)!}{2^{k+1}k!} \sqrt{2\pi}$ et on s'intéresse à $B_{2(k+1)} = B_{2k+2}$.

D'après la question D.2.c. on a : $B_{2k+2} = (2k+2-1)B_{2k} = (2k+1)B_{2k}$.

D'où, en tenant compte de l'hypothèse de récurrence :

$$\begin{split} B_{2(k+1)} &= B_{2k+2} = (2k+1)B_{2k} = (2k+1) \times \frac{(2k)!}{2^{k+1}k!} \sqrt{2\pi} \\ &= \frac{(2k+1)!}{2^{k+1}k!} \sqrt{2\pi} = \frac{(2k+2) \times (2k+1)!}{(2k+2) \times 2^{k+1}k!} \sqrt{2\pi} \\ &= \frac{(2k+2)!}{2(k+1) \times 2^{k+1}k!} \sqrt{2\pi} = \frac{(2(k+1))!}{2 \times 2^{k+1} \times (k+1) \times k!} \sqrt{2\pi} \\ &= \frac{(2(k+1))!}{2^{(k+1)+1} \times (k+1)!} \sqrt{2\pi} \end{split}$$

L'égalité est bien vérifiée au rang k+1, elle est héréditaire.

Conclusion

L'égalité est initialisée et héréditaire, elle est donc vraie pour tout entier naturel.

Pour tout entier naturel k, on a :

$$B_{2k+1} = 2^k k!$$
 et $B_{2k} = \frac{(2k)!}{2^{k+1}k!} \sqrt{2\pi}$

b. Rappelons que l'on a :

$$B_{n} = \lim_{x \to +\infty} b_{n}(x) = \lim_{x \to +\infty} \int_{0}^{x} \chi_{n}(t) dt = \lim_{x \to +\infty} \left[\sqrt{2\pi} \int_{0}^{x} t^{n} \Psi(t) dt \right]$$

On en tire immédiatement : $\lim_{x \to +\infty} \int_0^x t^n \Psi(t) dt = \frac{1}{\sqrt{2\pi}} B_n$.

L'expression de cette limite va donc dépendre, comme pour B_n , de la parité de n.

Si *n* est impair : n = 2k + 1.

$$\lim_{x \to +\infty} \int_0^x t^{2k+1} \, \Psi(t) \, dt = \frac{1}{\sqrt{2\pi}} B_{2k+1} = \frac{1}{\sqrt{2\pi}} \times 2^k \, k! = \frac{2^k \, k!}{\sqrt{2\pi}}$$

Si n est pair : n = 2k.

$$\lim_{x \to +\infty} \int_0^x t^{2k} \, \Psi(t) \, dt = \frac{1}{\sqrt{2\pi}} B_{2k} = \frac{1}{\sqrt{2\pi}} \times \frac{(2k)!}{2^{k+1} k!} \sqrt{2\pi} = \frac{(2k)!}{2^{k+1} k!}$$

Pour tout entier naturel k, on a :

$$\lim_{x \to +\infty} \int_0^x t^{2k+1} \Psi(t) dt = \frac{2^k k!}{\sqrt{2\pi}} \text{ et } \lim_{x \to +\infty} \int_0^x t^{2k} \Psi(t) dt = \frac{(2k)!}{2^{k+1} k!}$$